A phenomenological description of BslA assemblies across multiple length scales
نویسندگان
چکیده
Intrinsically interfacially active proteins have garnered considerable interest recently owing to their potential use in a range of materials applications. Notably, the fungal hydrophobins are known to form robust and well-organized surface layers with high mechanical strength. Recently, it was shown that the bacterial biofilm protein BslA also forms highly elastic surface layers at interfaces. Here we describe several self-assembled structures formed by BslA, both at interfaces and in bulk solution, over a range of length scales spanning from nanometres to millimetres. First, we observe transiently stable and highly elongated air bubbles formed in agitated BslA samples. We study their behaviour in a range of solution conditions and hypothesize that their dissipation is a consequence of the slow adsorption kinetics of BslA to an air-water interface. Second, we describe elongated tubules formed by BslA interfacial films when shear stresses are applied in both a Langmuir trough and a rheometer. These structures bear a striking resemblance, although much larger in scale, to the elongated air bubbles formed during agitation. Taken together, this knowledge will better inform the conditions and applications of how BslA can be used in the stabilization of multi-phase materials.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
منابع مشابه
Fabrication of Modularly Functionalizable Microcapsules Using Protein-Based Technologies
Proteins are desirable building blocks to create self-assembled, spatially defined structures and interfaces on length-scales that are inaccessible by traditional methods. Here, we describe a novel approach to create functionalized monolayers using the proteins BslA and SpyCatcher/SpyTag. BslA is a bacterial hydrophobin whose amphiphilic character underlies its ability to assemble into a monola...
متن کاملA Multi-scale Computational Approach for Nanoparticle Growth in Combustion Environments
In this paper a new and powerful computer simulation capability for the characterization of carbonaceous nanoparticle assemblies across multiple, connected scales, starting from the molecular scale is presented. The goal is to provide a computational infrastructure that can reveal through multi-scale computer simulation how chemistry can influence the structure and function of carbonaceous asse...
متن کاملThe spatial structure of cell signaling systems.
The spatial structure of the cell is highly organized at all levels: from small complexes and assemblies, to local nano- and microclusters, to global, micrometer scales across and between cells. We suggest that this multiscale spatial cell organization also organizes signaling and coordinates cellular behavior. We propose a new view of the spatial structure of cell signaling systems. This new v...
متن کاملN, S-Codoped TiO2/Fe2O3 Heterostructure Assemblies for Electrochemical Degradation of Crystal Violet Dye
In contemporary research, “Heterostructure” assemblies play an important role in energy conversion systems, wherein the composite assemblies facilitate faster charge carrier transport across the material interfaces. The improved/enhanced efficiency metrics in these systems (electro/photo-electrochemical processes/devices) is due to synergistic interaction and synchronized charge transport a...
متن کاملThe Bacterial Hydrophobin BslA is a Switchable Ellipsoidal Janus Nanocolloid.
BslA is an amphiphilic protein that forms a highly hydrophobic coat around Bacillus subtilis biofilms, shielding the bacterial community from external aqueous solution. It has a unique structure featuring a distinct partition between hydrophilic and hydrophobic surfaces. This surface property is reminiscent of synthesized Janus colloids. By investigating the behavior of BslA variants at water-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 374 شماره
صفحات -
تاریخ انتشار 2016